Part Number Hot Search : 
8D032BP 16245A KBP206 G821M RUSBF110 7SZ08P5 272AC ALD2303
Product Description
Full Text Search
 

To Download AD8610 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  precision, very low noise, low input bias current, wide bandwidth jfet operational amplifier AD8610/ad8620 rev. e information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. specifications subject to change without notice. no license is granted by implication or otherwise under any patent or patent rights of analog devices. trademarks and registered trademarks are the property of their respective owners. one technology way, p.o. box 9106, norwood, ma 02062-9106, u.s.a. tel: 781.329.4700 www.analog.com fax: 781.461.3113 ?2006 analog devices, inc. all rights reserved. features low noise: 6 nv/hz low offset voltage: 100 v maximum low input bias current: 10 pa maximum fast settling: 600 ns to 0.01% low distortion unity gain stable no phase reversal dual-supply operation: 5 v to 13 v applications photodiode amplifier ate instrumentation sensors and controls high performance filters fast precision integrators high performance audio pin configurations nc = no connect AD8610 top view (not to scale) null 1 ?in 2 +in 3 v? 4 nc v+ out null 8 7 6 5 02730-001 figure 1. AD8610 8-lead msop and soic_n ad8620 top view (not to scale) outa 1 ?ina 2 +ina 3 v? 4 v+ outb ?inb +inb 0 2730-002 8 7 6 5 figure 2.ad8620 8-lead soic general description the AD8610/ad8620 are very high precision jfet input ampli- fiers featuring ultralow offset voltage and drift, very low input voltage and current noise, very low input bias current, and wide bandwidth. unlike many jfet amplifiers, the AD8610/ad8620 input bias current is low over the entire operating temperature range. the AD8610/ad8620 are stable with capacitive loads of over 1000 pf in noninverting unity gain; much larger capacitive loads can be driven easily at higher noise gains. the AD8610/ ad8620 swing to within 1.2 v of the supplies even with a 1 k load, maximizing dynamic range even with limited supply volt- ages. outputs slew at 50 v/s in either inverting or noninverting gain configurations, and settle to 0.01% accuracy in less than 600 ns. combined with high input impedance, great precision and very high output drive, the AD8610/ad8620 are ideal amplifiers for driving high performance adc inputs and buffering dac converter outputs. applications for the AD8610/ad8620 include electronic instru- ments; ate amplification, buffering, and integrator circuits; cat/mri/ultrasound medical instrumentation; instrumentation quality photodiode amplification; fast precision filters (including pll filters); and high quality audio. the AD8610/ad8620 are fully specified over the extended industrial (?40c to +125c) temperature range. the AD8610 is available in the narrow 8-lead soic and the tiny 8-lead msop surface-mount packages. the ad8620 is available in the narrow 8-lead soic package. 8-lead msop packaged devices are avail- able only in tape and reel.
AD8610/ad8620 rev. e | page 2 of 24 table of contents features .............................................................................................. 1 applications....................................................................................... 1 pin configurations ........................................................................... 1 general description ......................................................................... 1 revision history ............................................................................... 2 specifications..................................................................................... 3 electrical specifications............................................................... 4 absolute maximum ratings ............................................................5 typical performance characteristics ..............................................6 theory of operation ...................................................................... 13 functional description.............................................................. 13 outline dimensions ....................................................................... 22 ordering guide .......................................................................... 22 revision history 11 /06rev. d to rev. e updated format..................................................................universal changes to table 1............................................................................ 3 changes to table 2............................................................................ 4 changes to outline dimensions................................................... 21 changes to ordering guide .......................................................... 21 2/04rev. c to rev. d. changes to specifications ................................................................ 2 changes to ordering guide ............................................................ 4 updated outline dimensions ....................................................... 17 10/02rev. b to rev. c. updated ordering guide................................................................. 4 edits to figure 15............................................................................ 12 updated outline dimensions ....................................................... 16 5/02rev. a to rev. b addition of part number ad8620 ...................................universal addition of 8-lead soic (r-8 suffix) drawing............................1 changes to general description .....................................................1 additions to specifications ..............................................................2 change to electrical specifications.................................................3 additions to ordering guide...........................................................4 replace tpc 29..................................................................................8 add channel separation test circuit figure.................................9 add channel separation graph ......................................................9 changes to figure 26...................................................................... 15 addition of high-speed, low noise differential driver section .............................................................................................. 16 addition of figure 30..................................................................... 16
AD8610/ad8620
specifica t ions @ v s = 5.0 v , v cm = 0 v , t a = 2 5 c , u n l e ss o t he r w i s e note d. table 1. p a r a met e r s y mbol c o nditions m i n t y p ma x unit input ch ara c teris t ics o f f s et v o ltage ( a d8610b) v os C40c < t a < +1 25c 45 80 100 200 v v o f f s et v o ltage ( a d8620b) v os C40c < t a < +1 25c 45 80 150 300 v v o f f s et v o ltage ( a d8610a/ad86 20a ) v os +25c < t a < +125c 85 90 250 350 v v C40c < t a < +1 25c 150 850 v i n put bias c u rr en t i b C40c < t a < +8 5c C40c < t a < +125c C10 C250 C2.5 +2 +130 +1.5 +10 +250 +2.5 pa pa na i n put o f f s et c u rr en t i n put v o ltage r a nge c o mmon -m o de r e jec t ion r a tio large signal v o l t age g a in o f f s et v o ltage dr if t ( a d8610b) o f f s et v o ltage dr if t ( a d8620b) o f f s et v o ltage dr if t ( a d8610a/a d8620a ) i os cmrr a vo v os /t v os /t v os /t C40c < t a < +8 5c C40c < t a < +1 25c v cm = C1.5 v to +2.5 v r l = 1 k , v o = C 3 v to +3 v C40c < t a < +1 25c C40c < t a < +1 25c C40c < t a < +1 25c C10 C75 C150 C2 90 100 +1 +20 +40 95 180 0.5 0.5 0.8 +10 +75 +150 +3 1 1.5 3.5 pa pa pa v db v/mv v/c v/c v/c o u tput cha r a c terist ics o utput v o ltage h i gh v oh r l = 1 k , C40c < t a < +125c 3.8 4 v o utput v o ltage l o w v ol r l = 1 k , C40c < t a < +125c C4 C3.8 v o utput c urr en t i ou t v ou t > 2 v 30 ma power suppl y p o w e r supply r e j e c t ion r a tio psrr v s = 5 v to 13 v 100 110 db supply c u r r en t/amplifier i sy v o = 0 v 2.5 3.0 ma C40c < t a < +1 25c 3.0 3.5 ma d y na mic pe rf orm ance slew r a te sr r l = 2 k 40 50 v/s gain bandwidth p r oduc t gbp 25 mh z s e ttling t ime t s a v = +1, 4 v step , to 0.01% 350 ns noise perfor m ance v o ltage noise e n p -p 0.1 h z to 10 h z 1.8 v p -p v o ltage noise d ensit y e n f = 1 kh z 6 nv/h z c u r r en t noise d e nsit y i n f = 1 kh z 5 fa/h z i n put c a pacitanc e c in diff er en tia l m o de 8 pf c o mmon m o de 15 pf channe l s eparation c s f = 10 kh z 137 db f = 300 kh z 120 db rev. e | page 3 of 24
AD8610/ad8620 rev. e | page 4 of 24 electrical specifications @ v s = 13 v, v cm = 0 v, t a = 25c, unless otherwise noted. table 2. parameter symbol conditions min typ max unit input characteristics offset voltage (AD8610b) v os 45 100 v C40c < t a < +125c 80 200 v offset voltage (ad8620b) v os 45 150 v C40c < t a < +125c 80 300 v offset voltage (AD8610a/ad8620a) v os 85 250 v +25c < t a < +125c 90 350 v C40c < t a < +125c 150 850 v input bias current i b C10 +3 +10 pa C40c < t a < +85c C250 +130 +250 pa C40c < t a < +125c C3.5 +3.5 na input offset current i os C10 +1.5 +10 pa C40c < t a < +85c C75 +20 +75 pa C40c < t a < +125c C150 +40 +150 pa input voltage range C10.5 +10.5 v common-mode rejection ratio cmrr v cm = C10 v to +10 v 90 110 db large signal voltage gain a vo r l = 1 k, v o = C10 v to +10 v 100 200 v/mv offset voltage drift (AD8610b) v os /t C40c < t a < +125c 0.5 1 v/c offset voltage drift (ad8620b) v os /t C40c < t a < +125c 0.5 1.5 v/c offset voltage drift (AD8610a/ad8620a) v os /t C40c < t a < +125c 0.8 3.5 v/c output characteristics output voltage high v oh r l = 1 k, ?40c < t a < +125c +11.75 +11.84 v output voltage low v ol r l = 1 k, ?40c < t a < +125c C11.84 C11.75 v output current i out v out > 10 v 45 ma short circuit current i sc 65 ma power supply power supply rejection ratio psrr v s = 5 v to 13 v 100 110 db supply current/amplifier i sy v o = 0 v 3.0 3.5 ma C40c < t a < +125c 3.5 4.0 ma dynamic performance slew rate sr r l = 2 k 40 60 v/s gain bandwidth product gbp 25 mhz settling time t s a v = 1, 10 v step, to 0.01% 600 ns noise performance voltage noise e n p-p 0.1 hz to 10 hz 1.8 v p-p voltage noise density e n f = 1 khz 6 nv/hz current noise density i n f = 1 khz 5 fa/hz input capacitance c in differential mode 8 pf common mode 15 pf channel separation c s f = 10 khz 137 db f = 300 khz 120 db
AD8610/ad8620
absolute maximum ra tings
table 3. p a r a me t e r supply v o ltage 27.3 v i n put v o ltage v s? to v s+ diff er en tia l i n put v o ltage sup p ly v o ltage o utput shor t - ci r c uit dur a tion t o gnd i n definit e stor age t empera tur e r a nge r, rm p a ck ages C65c to +150c o p era t ing t e mp er a tur e r a nge AD8610/ad862 0 C40c to +125c j u nc tion t e mper a tur e r a nge r, rm p a ck ages C65c to +150c l e ad t e mper a tur e r a nge (s older i ng , 10 sec) 300c r a ting s t r e s s es a b o v e t h os e list e d u nde r a b s o l u te m a xim u m r a t i n gs ma y ca us e p e r m a n e n t dama ge to t h e de vi ce. t his is a st r e ss r a t i ng on ly ; f u n c t i on a l op e r at i o n of t h e d e v i c e a t t h e s e or an y o t h e r con d i t ions a b o v e t h o s e i ndic a te d i n t h e op er a t io na l s e c t io n o f t h is sp e c if ic a t io n is no t im pl ie d . e x p o sur e t o a bs o l u te max im u m r a t ing co ndi t ion s fo r ex tende d p e r io d s ma y a f fe c t de vice rel ia b i l i t y . table 4. therm a l resistance p a ck age t y pe ja 1 jc unit 8-l e ad msop (rm) 190 44 c/w 8-l e ad soic (r) 158 43 c/w 1 ja is s p e c if i e d f o r wo rs t-cas e co nd itio ns ; that is , ja i s spe c i f i e d for a devi ce sol d er ed i n ci rcui t boa r d for sur f a c e- m o un t pa cka g es. esd caution rev. e | page 5 of 24
AD8610/ad8620
typical perf orm ance cha r acte ristics 14 60 0 v s = 13v 02 73 0- 0 06 v s = 5 v 12 40 0 i n pu t o f f set vo l t a g e ( v ) n u m b e r of a m p l if ie r s 10 8 6 4 20 0 0 C200 C400 2 0 02 73 0- 0 03 C4 0 25 85 12 5 02 73 0- 00 4 v s = 1 3v C600 C25 0 C150 C50 5 0 15 0 250 C40 25 85 125
i n pu t o f f s et v o l t a g e ( v ) t em per a t u r e ( c )
figure 3. input offset volt age at 1 3 v figure 6. input offset volt age v s . t e m p eratu r e at 5 v ( 3 00 a m pl ifi e rs) 600 14 0 0 . 2 0 .6 1 .0 1 .4 1 .8 2 .2 2 .6 v s = 5 v o r 1 3 v 12 400 i n p u t o f f s et vo l t a g e ( v) i np ut bi as cur re nt ( p a) n u m b e r of a m p l if ie r s 10 8 6 4 200 0 C200 C400 C600 2 0 0 273 0- 0 07 10 C10 5 C5 0 02 73 0- 0 08 v s = 13v t e m p e rat ure ( c) t c v os ( v/ c ) figure 4. input offset volt age v s . t e m p eratu r e at 1 3 v ( 3 0 0 a m pl ifie rs) figure 7. input offset volt age d r ift 18 3. 6 02 73 0- 00 5 C250 C1 50 C50 50 150 250 i n pu t o f f set vo l t a g e ( v ) v s = 5 v 16 14 3. 4 3. 2 3. 0 2. 8 2. 6 2. 4 n u m b e r of a m p l if ie r s 12 10 8 6 4 2 0 2. 2 2. 0 c o m m on - m od e v o lt a g e ( v ) figure 5. input offset volt age at 5 v figure 8. input b i as curr ent v s . co m m o n-mod e vo ltag e rev. e | page 6 of 24
2. 0 1. 5 1. 0 0. 5 2. 5 3. 05 2. 55 2. 85 2. 75 2. 65 2. 95 2. 65 2. 40 2. 45 2. 50 2. 55 2. 60 s up p l y curr e nt ( m a) s up p l y curr e nt ( m a) s up p l y curre nt ( m a ) AD8610/ad8620
3. 0 0 3 2 1 4 5 6 7 8 9 10 11 12 13 1. 8 1. 6 1. 4 1. 2 1. 0 0. 8 0. 6 0. 4 0. 2 0 02 73 0- 01 2 v s = 13v 02 73 0- 01 1 02 73 0- 01 0 02 73 0- 0 09 ou tp u t v o l t a g e l o w ( v ) o ut p ut v o l t ag e hi g h ( v ) o ut p ut v o l t ag e t o s up p l y rai l ( v ) 0 1 0 0 1k 10 k 1 00 k 1m 1 0m 10 0m su pp l y v o l t a g e ( v ) r esi s t a n c e l o a d ( ? ) figure 9. supply c u rrent v s . supp ly vo l t age figure 12. output v o ltag e to supply r a il vs. load 4. 25 C40 125 85 25 v s = 13v 25 85 C40 125 v s = 5 v r l = 1 k ? 4. 20 4. 15 4. 10 4. 05 4. 00 02 73 0- 0 13 25 85 C40 125 02 73 0- 01 4 v s = 5 v r l = 1k ? 3. 95 t e m p e rat ure ( c) t e m p e ra t ure ( c) figure 1 0 . supp ly c u rre nt v s . te mper a t ure at 13 v fig u re 1 3 . out p ut v o lt ag e hig h v s . t e mpe r at ur e at 5 v C 3. 9 5 C40 125 85 25 v s = 5 v C4 . 00 C4 . 05 C4 . 10 C4 . 15 C4 . 20 C4 . 25 C4 . 30 t e m p e rat ure ( c) t e m p e rat ure ( c) figure 1 1 . supp ly c u rre nt v s . te mper a t ure at 5 v figure 1 4 . output v o ltag e lo w v s . te m p eratu r e at 5 v rev. e | page 7 of 24 2. 30 2. 35
120 100 80 60 40 20 0 AD8610/ad8620
12 . 05 60 12 . 00 25 85 C40 125 v s = 1 3v r l = 1 k ? 40 02 73 0- 0 18 g = + 100 g = + 1 0 g = + 1 v s = 1 3v r l = 2 k ? c l = 20p f o ut p ut v o l t ag e hi g h ( v ) p has e ( d eg re es) 02 73 0- 0 17 a vo (v / m v ) a vo ( v /m v ) c l os e d - l oop ga in ( d b ) 11 . 95 11 . 90 20 0 11 . 85 C20 11 . 80 C40 1k 10 k 100k 1m 1 0m 1 00m t e m p e rat ure ( c) f re q ue ncy ( hz ) fig u re 1 5 . out p ut v o lt ag e hig h v s . t e mpe r at ur e at 1 3 v fig u re 1 8 . c l os ed-l oop ga in v s . fr equ e ncy 26 0 C 11 . 8 0 C4 0 25 85 125 v s = 13v v o = 10v r l = 1k ? C1 1. 85 02 73 0- 0 15 25 8 5 C40 125 02 73 0- 01 6 v s = 13v r l = 1k ? 22 0 24 0 ga in ( d b ) o ut p ut v o l t ag e l o w ( v ) 20 0 C1 1. 90 18 0 16 0 14 0 C1 1. 95 C1 2. 00 12 0 10 0 02 73 0- 0 19 C4 0 25 85 125 02 73 0- 0 20 v s = 5 v v o = 3 v r l = 1 k ? C1 2. 05 t e m p e ra t ure ( c) t em per a t u r e ( c ) figure 1 6 . output v o ltag e lo w v s . te m p eratu r e at 1 3 v figure 19. a vo v s . t e mp er ature at 1 3 v 270 19 0 225 18 0 10 1 00 1 200 v s = 1 3v r l = 1 k ? m ar k e r at 2 7 m hz m = 69. 5 c l = 20p f 180 17 0 135 16 0 90 15 0 45 14 0 0 13 0 C20 C45 12 0 C40 C90 11 0 C60 C135 10 0 C80 C180 f re q u e ncy ( m hz ) t em per a t u r e ( c ) fig u re 1 7 . op en-lo o p g a in and ph as e v s . frequen c y figure 20. a vo v s . t e mp er ature at 5 v rev. e | page 8 of 24
0 80 16 0 160 122 AD8610/ad8620
140 p s rr ( d b) p s rr ( d b) p s rr ( d b) 14 0 + psr r C psr r 02 73 0- 02 1 f re q ue ncy ( hz ) v s = 13v 100 10k 10 0k 1k 1 m 10m 60m 120 12 0 10 0 100 02 73 0- 0 24 v s = 13 v v o l t a g e ( 300m v / di v ) vo l t a g e ( 3 0 0 m v/ d i v) cm rr ( d b) 80 60 40 20 60 40 C2 0 C4 0 20 0 1 0 10 0 1k 10k 100k 1m 10m 60m f re q ue nc y ( h z ) figure 21. psrr vs. freque ncy at 13 v figure 24. cmrr vs. frequ e ncy + psr r Cp s r r 02 73 0- 0 22 f re q ue ncy ( hz ) v s = 5 v 10 0 10 k 1 00k 1k 1 m 10m 60m v s v i = 13 n = C3 v 00mv p - p a v r l = C10 = 1 0 k 0 ? v i n ch 2 = 5 v / d iv v o u t 140 120 100 80 60 40 20 0 C20 0v 0v 02 73 0- 0 25 C40 t im e ( 4 s /d iv ) figure 22. psrr vs. freque ncy at 5 v figure 2 5 . pos itiv e ov erv o lt age r e cov e ry v s v i a v = 13 = C 10 n = 30 v 0 0m v p - p r l c l = 10k = 0 p f ? v i n v o u t ch 2 = 5 v /d iv 25 85 C4 0 1 25 0 273 0- 0 23 t e m p e rat ure ( c) figure 23. psrr vs. temp er ature 121 120 119 118 117 116 0v 0v 02 73 0- 02 6 t i m e ( 4 s /d iv ) fi gur e 26 . ne ga t i ve ove r vol t a g e r e co ve r y rev. e | page 9 of 24
AD8610/ad8620
100 ga in = + 1 0 ga in = + 1 0 0 ga in = + 1 v s = 5 v v s = 1 3v v in p- p = 1 . 8 v 02 73 0- 0 27 t i m e ( 1s/ di v ) z ou t ( ? ) vo l t a g e n o i se d e n si t y ( n v/ h z ) p e ak t o p e ak v o l t ag e no i s e ( 1 v / di v ) 90 80 70 60 50 40 30 20 10 0 sm a l l si g n a l o ver sh o o t ( % ) i b (p a ) z ou t ( ? ) 02 73 0- 0 32 02 73 0- 03 1 02 73 0- 0 3 0 0 10 100 10 k 1k +o s Co s v s = 13v r l = 2 k ? v in = 100m v p - p 1k 10k 100 k 1m 10m 100m f re q ue ncy ( hz ) figure 2 7 . 0.1 h z to 10 h z input v o lt age n o ise figure 30. z ou t vs. f r e quenc y 027 30 - 02 8 v s = 13v 1 10 10 0 10k 100k 1k 1m 30 00 1000 0 2 5 1 2 5 85 25 00 20 00 10 0 15 00 10 10 00 500 1 0 f re q ue nc y ( hz ) t e m p e rat ure ( c) fig u re 2 8 . inp u t v o lt ag e no is e d e ns it y v s . freque ncy figure 3 1 . inp u t bi a s curre nt v s . te mp eratu r e 100 40 027 30 - 02 9 10k 100 k 1k 100m 10m 1m g a i n = +10 ga in = + 1 0 0 ga in = + 1 v s = 1 3v 90 35 80 30 25 20 15 10 70 60 50 40 30 20 10 0 5 0 f re q ue ncy ( hz ) cap aci t ance ( p f ) figure 29. z ou t vs. f r e quenc y fig u re 3 2 . s m al l s i g n al ov ers h o o t v s . load c a p a cit a nc e rev. e | page 10 of 2 4
AD8610/ad8620
0 5 10 15 20 25 40 30 35 02 73 0- 03 3 sm a l l si g n a l o v er s h o o t ( % ) +o s Co s v s = 5 v r l = 2 k ? v in = 100m v v s = 13v v in a v r l p - p = = + 1 = 2 k ? 20v c l = 2 0 p f vo l t a g e ( 5 v/ d i v) vo l t a g e (5 v/ d i v ) vo l t a g e (5 v / d i v) 02 73 0- 0 38 02 73 0- 0 37 02 73 0- 03 6 0 10 100 1k 10k cap aci t a nce ( p f ) t i m e ( 400n s/ di v ) fig u re 3 3 . s m al l s i g n al ov ers h o o t v s . load c a p a cit a nc e figure 3 6 . +sr at g = + 1 v s = 13v v in = 14v a v = + 1 f r e q = 0. 5khz v in v ou t v s = 1 3v v in p- p = 2 0 v a v = + 1 r l = 2 k ? c l = 20p f 02 73 0- 0 35 02 73 0- 03 4 t i m e ( 400 s/ d i v ) t i m e ( 400n s/ di v ) fig u re 3 4 . n o ph as e r ev ers al figure 3 7 . ?sr at g = + 1 v s = 13v
v in p-p = 2 0 v
a v = + 1
r l = 2 k ?
c l = 20p f
t im e ( 1 s /d iv ) v s = 13v v in p-p = 2 0 v a v = C 1 r l = 2 k ? c l = 20p f t i m e ( 1 s /d iv ) fig u re 3 5 . l a rg e si g n al r es p ons e at g = + 1 fig u re 3 8 . l a rg e si g n al r es p ons e at g =? 1 vo l t a g e (5 v/ d i v ) vo l t a g e ( 5 v/ d i v) rev. e | page 11 of 2 4
AD8610/ad8620
vo l t a g e ( 5 v/ d i v) v s = 13v v in p-p = 2 0 v a v r l = C 1 = 2k ? c l s r = 55v = 20 p f / s 02 73 0- 03 9 vo l t a g e (5 v/ d i v ) v s v in = 13v 2 0 v a v r l p-p = = C 1 = 2k ? sr c l = 5 0 v = 20 p f / s t i m e ( 400n s/ di v ) time ( 4 0 0 n s /d iv ) figure 3 9 . +sr at g = ? 1 figure 4 0 . ?sr at g = ? 1 02 73 0- 0 40 rev. e | page 12 of 2 4
AD8610/ad8620 rev. e | page 13 of 24 theory of operation + ? v in 2 0v p- p 0 3 2 u1 +13v ?13v r4 2k ? r2 2k ? r1 20k ? r3 2k ? 0 0 0 0 u2 5 6 7 v+ v? v? v+ cs (db) = 20 log (v out / 10 v in ) 02730-041 figure 41. channel separation test circuit functional description the AD8610/ad8620 are manufactured on analog devices, inc.'s xfcb (extra fast complementary bipolar) process. xfcb is fully dielectrically isolated (di) and used in conjunction with n-channel jfet technology and thin film resistors (that can be trimmed) to create the jfet input amplifier. dielectrically iso- lated npn and pnp transistors fabricated on xfcb have an ft greater than 3 ghz. low tc thin film resistors enable very accurate offset voltage and offset voltage tempco trimming. these process breakthroughs allow analog devices ic designers to create an amplifier with faster slew rate and more than 50% higher band- width at half of the current consumed by its closest competition. the AD8610/ad8620 are unconditionally stable in all gains, even with capacitive loads well in excess of 1 nf. the AD8610/ ad8620b grade achieves less than 100 v of offset and 1 v/c of offset drift, numbers usually associated with very high precision bipolar input amplifiers. the AD8610 is offered in the tiny 8-lead msop as well as narrow 8-lead soic surface-mount packages and is fully specified with supply voltages from 5 v to 13 v. the very wide specified temperature range, up to 125c, guarantees superior operation in systems with little or no active cooling. the unique input architecture of the AD8610/ad8620 features extremely low input bias currents and very low input offset volt- age. low power consumption minimizes the die temperature and maintains the very low input bias current. unlike many com- petitive jfet amplifiers, the AD8610/ad8620 input bias currents are low even at elevated temperatures. typical bias currents are less than 200 pa at 85c. the gate current of a jfet doubles every 10c resulting in a similar increase in input bias current over temperature. give special care to the pc board layout to minimize leakage currents between pcb traces. improper lay- out and board handling generates a leakage current that exceeds the bias current of the AD8610/ad8620. 138 136 120 128 126 124 122 132 130 134 02730-042 cs (db) frequency (khz) 0 100 150 200 50 250 300 350 figure 42. ad8620 channel separation graph 8 7 2 6 5 4 3 02730-043 supply current (ma) temperature (c) ?75 ?25 0 25 ?50 50 75 100 125 opa627 AD8610 figure 43. supply current vs. temperature power consumption a major advantage of the AD8610/ad8620 in new designs is the power saving capability. lower power consumption of the AD8610/ad8620 makes them much more attractive for portable instrumentation and for high density systems, simplifying ther- mal management, and reducing power-supply performance requirements. compare the power consumption of the AD8610 vs. the opa627 in figure 43.
AD8610/ad8620
driving large capacitive lo ads +5 v the AD8610 /ad8620 ha v e exc e l len t ca p a c i ti v e lo ad dr i v in g ca p a b i li ty an d c a n s a fely dr i v e up to 10 nf w h e n o p er a t in g w i t h 5 v su p p ly . f i g u r e 44 a nd f i gu r e 45 co m p a r e th e AD8610/ ad8620 a gain st th e o p a627 in th e n o nin v er ting ga in co nf igu- v in = 50mv 2k ? 2k ? C5v 2 f 3 2 7 4 02 73 0- 04 6 ra t i o n dr i v in g a 10 k r e sis t o r a nd 10,000 pf ca p a ci t o r p lace d figure 4 6 . c a pa cit i v e load dr iv e t e st circu i t i n p a ral le l o n i t s o u t p u t , wi th a s q ua r e wa v e in p u t s e t t o a f r eq uen c y o f 200 kh z. th e AD8610/ad86 20 ha v e m uc h les s r i n g ing tha n th e o p a627 wi t h hea v y ca p a ci tiv e lo ads. t i m e ( 20 s/ di v ) v s = 5 v r l = 10 k ? c l = 2 f t im e ( 2 s /d iv ) v s = 5 v r l = 10k? c l = 10, 000p f 02 73 0- 0 45 02 73 0- 04 4 v o l t a g e (5 0 m v/ d i v) v o l t a g e ( 5 0 m v/ d i v) v o l t a g e (2 0 m v/ d i v) v o l t a g e ( 2 0 m v/ d i v) 02 73 0- 0 47 02 73 0- 0 48 v s = 5 v r l = 10 k ? c l = 2 f figure 4 7 . o p a 6 27 capa citiv e lo ad d r iv e, a v = +2 fi gure 44 . o p a62 7 dri v ing c l = 10 ,000 pf v s = 5 v r l = 10k? c l = 10, 000p f t i m e ( 20 s/ di v ) fi gur e 48 . ad8 610 /ad8 62 0 ca pa ci ti ve lo a d dri ve , a v = + 2 tim e ( 2 s /d iv ) fi gur e 45 . ad8 610 /ad8 62 0 dri v i n g c l = 10 ,0 00 pf the AD8610 /ad8620 ca n dr i v e m u c h la rg er ca p a ci tan c es wi t h o u t an y exter n al co m p en s a tio n . al t h o ug h t h e AD8610/ ad8620 a r e s t ab le wi t h v e r y la rg e ca p a ci ti v e lo ads, r e m e m b er th a t th i s ca pa ci ti v e l o a d i n g li m i t s th e ba n d w i d th o f th e a m p l i f i e r . h e a v y c a p a ci t i ve lo ads als o in creas e t h e am o u n t o f o v ers h o o t a nd r i n g i n g a t t h e o u t p ut. f i gur e 47 a nd fi g u r e 4 8 s h ow t h e AD8610/ad86 20 a nd t h e o p a627 in a n o nin v er tin g ga in o f + 2 dr i v in g 2 f o f ca p a ci tan c e lo ad . th e r i n g ing o n t h e o p a627 is m uc h la rg er in ma g n i t u d e and co n t in ues 10 tim e s lo n g er than th e AD8610 /ad8620. rev. e | page 14 of 2 4
AD8610/ad8620
slew rat e (un i ty gain invert ing vs. noninverting) v s = 13v r l = 2 k ? am p lif iers g e n e ral l y ha v e a faster s lew ra t e in an in v e r t in g u n i t y g= C 1 ga in co nf igura t i o n d u e t o t h e a b s ence o f t h e dif f er en t i al i n p u t s r = 54v / s vo l t a g e ( 5 v/ d i v ) t i m e ( 4 00n s / di v ) ca p a ci tan ce . fi g u re 4 9 t h rou g h f i g u re 5 2 s h ow t h e p e r f or m a nc e o f t h e a d 8 6 1 0 / ad8620 c o n f i g u r e d i n a g a i n o f C 1 c o m p a r e d t o th e o p a6 27. th e ad861 0/ad86 20 s lew ra t e is m o r e symm etr i cal , a n d bo th t h e posi ti v e a n d n e ga t i v e tra n si ti o n s a r e m u c h c l e a n e r tha n in t h e o p a627. v r s = 13 v l = 2 k ? g = C 1 s r = 54v / s 02 73 0- 0 52 02 730 - 05 1 v o l t a g e ( 5 v/ d i v) fig u re 5 1 . Csl ew r a t e of a d 86 10 /a d8 6 20 in u n it y ga in of C1 v s = 13v r l = 2 k ? g= C 1 vo l t a g e ( 5 v/ d i v) s r = 56v / s 02 73 0- 0 50 02 73 0- 0 49 vo l t a g e ( 5 v/ d i v) t i m e ( 400n s/ di v ) fi gur e 49 . + s le w r a te o f ad86 10 / ad86 2 0 i n uni ty gai n of C 1 v s = 13v r l = 2 k ? g= C 1 t i m e ( 4 00n s/ d i v ) s r = 42. 1v / s figure 5 2 . Csl e w r a te of o p a6 27 in un i t y gain of C1 the AD8610 /ad8620 ha v e a ver y fas t s lew ra te o f 60 v/s ev en w h en co nf igur e d in a n o nin v er t i n g ga in o f +1. th i s is t h e t o ug h est co ndi t i on t o i m p o s e o n an y a m plif ier sin c e t h e in p u t co m m o n - m o de c a p a ci t a nce o f t h e am plif i er gen er a l l y ma k es i ts s r a p p e ar w o rs e . th e s l e w ra t e o f a n a m pli f i er va r i es a cco r d in g t o t h e v o l t a g e dif f er en ce b e twe en i ts t w o in puts. t o obs er v e t h e maxim u m sr , a v o l t a g e dif f er en ce o f ab o u t 2 v b e tw e en t h e in p u ts m u s t b e t i m e ( 4 00n s / di v ) en sur e d . this is r e q u ir e d fo r vir t u a l l y a n y jfet o p a m p s o t h a t fig u re 5 0 . +sl ew r a t e of opa 6 2 7 in u n it y ga in of C 1 one s i d e of t he o p am p i n put c i rc u i t i s c o m p l e tely of f , t h u s m a x i - m i z i n g t h e c u r r en t a va i la b l e t o cha r g e a n d dis c ha rg e t h e i n ter n al co m p ens a t i on c a p a ci t a n c e . l o wer dif f er en t i al dr i v e v o l t a g es p r o d uce lo w e r slew ra te r e adin gs. a jfe t in p u t o p a m p wi t h a s lew r a t e o f 60 v/s a t uni t y gain wi th v in = 10 v mig h t s l ew a t 20 v/s, if i t is o p era t e d a t a gain o f +100 wi t h v in = 100 mv . rev. e | page 15 of 2 4
AD8610/ad8620
the s l ew ra t e o f th e AD8610/ad8620 is do u b l e tha t o f t h e input overv o ltage protection o p a627 wh en c o nf igur ed in a u n i t y ga in o f +1 (s ee f i gur e 53 w h en t h e i n p u t o f a n a m plif ier is dr i v en b e lo w v ee o r a b o ve a nd f i gur e 54). v cc b y m o r e tha n o n e v be , la rge c u r r en ts f l o w f r o m t h e sub- st r a te t h rou g h t h e ne g a t i v e su pply ( v C ) or t h e p o s i t i ve sup p ly v s = 13v r l = 2 k ? (v+), r e sp e c t i vely , to t he i n p u t p in s and can de st r o y t h e de vic e . g= + 1 i f t h e in p u t s o ur ce ca n de li v e r la r g er c u rr en ts t h a n t h e maxim u m v o l t a g e ( 5 v/ d i v) fo r w a r d c u r r en t o f t h e dio d e (> 5 ma), a s er i es r esis t o r ca n b e adde d to p r o t e c t t h e i n p u ts . w i t h i ts ver y lo w i n p u t b i as an d o f fs et c u r r en t, a la rg e s e r i es r e sis t o r ca n b e plac e d in f r o n t o f th e AD8610 /ad8620 in p u ts t o limi t c ur r en t t o be l o w da ma g i ng s r = 85v / s l e v e l s . s e r i e s re s i st anc e o f 10 k ge ne r a te s l e ss t h an 2 5 v of o f f s et. t h is 10 k al lo ws in p u t v o l t a g es m o r e t h an 5 v b e yo n d ei t h er p o w e r s u p p l y . th er mal n o is e g e n era t e d b y t h e resis t o r adds 02 73 0- 0 54 02 73 0- 0 53 7.5 nv/ h z t o th e n o is e o f th e a d 8610/ad8 620 . f o r th e ad861 0 / ad8620, dif f er en t i al v o l t a g es eq ual t o t h e s u p p ly v o l t a g e d o n o t ca us e a n y p r ob le m (s ee f i gur e 55) . i n t h i s c o n t e x t , p l eas e n o t e tha t t i m e ( 400n s/ di v ) vo l t a g e ( 5 v/ d i v) t h e hig h b r e a k d o w n v o l t a g e o f t h e i n p u t f e t s e l i m i n a t e s t h e n e e d fi gur e 53 . + s le w r a te o f ad86 10 / ad86 2 0 i n uni ty gai n of + 1 t o in cl ude cla m p dio d es b e tw e e n t h e in p u ts o f t h e a m plif ier , a p r a c - v s = 13v tice tha t is ma n d a t o r y o n ma n y p r ec isi o n o p a m p s . u n f o r t una t e l y , r l = 2 k ? g= + 1 cla m p dio d es g r e a t l y i n t er f er e w i t h ma n y a p plic a t io n c i r c ui ts s u c h as p r ecisio n r e c t if iers an d co m p a r a t o r s. th e AD8610/ 02 73 0 - 05 6 ad8620 a r e f r ee f r o m th es e limi t a tio n s. +1 3 v 3 7 6 2 C13v 4 a d 8610 v1 14v s r = 23v / s 0 fig u re 5 6 . u n it y ga in f o l l ow er no phas e r e v e rs al m a n y am plif iers misb e h a v e w h en o n e o r b o t h o f t h e in p u ts a r e t i m e ( 400n s / di v ) fig u re 5 4 . +sl ew r a t e of opa 6 2 7 in u n it y ga in of + 1 fo r c e d b e yo nd t h e in pu t co mmo n - m o d e v o l t a g e ra n g e . p h as e r e v e r s al i s t y p i f i e d b y th e tr a n s f e r fun c ti o n o f th e a m p l i f i e r , e f f e ct - th e s l e w ra t e o f a n a m pli f ie r det e r m in es t h e ma xim u m f r e q uen c y ti v e l y r e v e r sin g i t s tra n s f e r pola r i ty . i n s o m e cases, this ca n ca us e a t w hich i t c a n resp o nd to a la rge sig n a l i n p u t. t his f r e q uen c y l o c k u p a n d ev en eq ui p m e n t d a m a g e in se r v o s y s t e m s , a n d ca n ( k now n a s f u l l - p o w e r b a nd w i dt h or f p b w ) c a n b e c a l c u l a t e d ca use p e r m an en t d a ma g e o r n o r e co v e ra b l e p a ra m e t e r s h if ts to f o r a g ive n d i s t or t i on ( f or e x am pl e, 1 % ) f r om t he e q u a t i on : t h e am plif ier i ts e lf. m a n y am pli f iers fe a t ur e com p e n s a t i on cir - sr c u i t r y t o co m b a t t h e s e ef fe c ts, b u t s o m e a r e o n ly ef fe c t i v e fo r fpbw = t h e in v e r t in g in p u t. th e ad861 0/ ad8620 a r e de si g n ed t o p r ev e n t ( 2 v peak ) phas e r e v e rs al w h en on e o r b o t h i n p u t s a r e fo r c e d b e yo nd t h e i r in p u t co mm o n - m o d e v o l t a g e ran g e . v o lt a g e ( 1 0 v /d iv ) ch 1 = 2 0 .8 v p- p ch 2 = 1 9 .4 v p- p 02 73 0- 05 5 v o l t a g e ( 5 v/ d i v) 02 73 0- 0 57 v ou t v in 0v 0v t i m e ( 4 0 0 ns / d iv ) fi gur e 55 . ad8 610 fp bw t i m e ( 400 s/ d i v ) fig u re 5 7 . n o ph as e r ev ers al rev. e ? page 16 of 2 4
AD8610/ad8620
thd read ings v s . common-mod e volta g e t o tal ha r m o n ic dis t o r tio n o f t h e AD8610/ad8 620 is w e l l b e lo w 0.0006% wi t h an y lo ad do wn t o 600 . th e AD8610/ad8620 o u t p er f o r m t h e o p a627 f o r dis t o r tio n , es p e c i al ly a t f r eq uen cies a b o v e 20 kh z. 0. 1 settling time the AD8610 /ad8620 ha v e a ver y fas t s e t t l i n g tim e , e v en t o a v e r y tig h t e r r o r ba n d , as ca n be s een f r o m fi g u r e 6 0 . th e ad861 0 / a d 8620 a r e co n f igu r ed in a n in v e r t in g ga in o f +1 wi th 2 k in p u t a nd fe e d b ack r e sisto r s. t h e o u tp u t is m o ni to r e d w i t h a 10 x, 10 m, 11.2 pf s co p e p r obe . 10 100 1k 10k 80k 02 73 0- 05 8 0. 0 1 0. 001 0. 0 001 o p a627 AD8610 v s = 13v v in = 5v r m s bw = 80k h z 0. 00 1 0. 01 0. 1 1 10 02 73 0- 06 0 1. 2k 1. 0k 800 600 400 200 0 se t t l i n g t i m e (n s) t h d + n ( % ) th d + n ( % ) f re q u e ncy ( hz ) e rro r ban d ( % ) fi gur e 58 . ad8 610 vs. op a6 27 th d + no i s e @ v cm = 0 v fi gur e 60 . ad8 610 /ad8 62 0 se ttli n g tim e vs. err o r ba nd 0. 1 f re q ue ncy ( hz ) o p a627 0. 0 01 0. 0 1 0. 1 1 10 02 73 0- 06 1 e rro r ban d ( % ) 1. 2 k 1. 0 k 800 600 400 200 0 figure 59. t h d + n o ise vs. frequ e ncy fi gure 61 . o p a62 7 settl i n g tim e vs. erro r band noise vs. com m on-mo d e voltage AD8610/ad86 20 n o is e den s i t y va r i es o n l y 10% o v er t h e in p u t ra n g e as sh o w n in t a b le 5. table 5. noise vs. com m o n - m ode voltage 10 100 1k 10 k 20k 02 73 0- 0 59 0. 01 0. 0 01 4v r m s 6v rm s 2v r m s v s = 13v r l = 600 ? se t t l i n g t i m e ( n s ) v cm a t f = 1 kh z ( v ) no ise read ing (nv/hz) ?10 7.21 ?5 6.89 0 6.73 +5 6.41 +10 7.21 rev. e | page 17 of 2 4
AD8610/ad8620
the AD8610 /ad8620 ma in ta in this fas t s e t t l i n g w h en lo aded 10 0. 00 001 0. 0001 0. 001 0. 01 0. 1 0 273 0- 0 64 v cc v ee w i th la r g e ca pa ci ti v e loa d s a s s h o w n in fi g u r e 6 2 . 3. 0 e rro r ba nd = 0. 0 1 % 2. 5 de l t a f r o m re s p e ct i v e rai l ( v ) 1 s e tt li n g t i m e ( s ) s e tt li n g t i m e ( s ) 2. 0 1. 5 1. 0 0. 1 0. 5 1 02 73 0- 0 62 l o ad cu rre nt ( a ) fi gur e 64 . ad8 610 /ad8 62 0 dro p out fro m 1 3 v vs. loa d cur r e nt 0 0 500 100 0 150 0 2000 c l (p f ) 10 v ee v cc fi gur e 62 . ad8 610 /ad8 62 0 se ttli n g tim e vs. lo a d ca pa cita nc e 3. 0 e rro r ban d = 0. 0 1 % 2. 5 de l t a f r o m re s p e ct i v e rai l ( v ) 1 2. 0 1. 5 1. 0 02 73 0- 0 65 0. 1 0. 5 0. 0 0001 0. 0001 0. 001 0. 01 0. 1 1 02 73 0- 0 63 l o ad cu rre nt ( a) fig u re 6 5 . o p a 6 27 drop out f r om 1 5 v v s . load cu rr ent 0 0 500 100 0 150 0 2000 c l (p f ) al th o u g h o p era t in g co n d i t io n s im p o s e d o n th e AD8610/ad8 6 2 0 (13 v) a r e les s fa v o ra b l e tha n t h e o p a627 (1 5 v), i t ca n be s e en tha t t h e AD8610/ad8620 ha v e m uc h bet t er dr i v e c a p a b i l i t y ( l ow e r h e a d r o om t o t h e s u pp ly ) f o r a g i ve n l o a d c u r r e n t . operating with supplies greater th an 13 v the AD8610 /ad8620 maxim u m o p era t in g v o l t a g e is sp ecif ie d a t 13 v . w h en 13 v is n o t r e adil y a v ailab le , an in exp e n s i v e ld o can p r o v ide 12 v f r o m a n o mina l 15 v s u p p l y . fi gure 63 . o p a62 7 settl i n g tim e vs. l o a d ca p a ci ta n ce out p ut current capability the AD8610 /ad8620 ca n dr i v e v e r y h e a v y lo ads d u e t o i t s hig h ou t p u t c ur r en t. i t is c a p a b l e o f s o ur cin g o r sinkin g 45 ma a t 10 v o u t p u t . the sh o r t cir c ui t c u r r en t is q u i t e hig h a nd t h e p a r t is ca p a b le o f sinkin g a b o u t 9 5 ma a n d s o u r ci n g o v e r 60 ma wh ile o p e ra t in g w i th su p p li e s o f 5 v . f i gur e 64 a nd f i gur e 65 co m p a r e t h e lo ad c u r r en t vs. o u t p u t v o l t a g e o f AD8610/ ad8620 an d op a627. rev. e | page 18 of 2 4
AD8610/ad8620 rev. e | page 19 of 24 input offset voltage adjustment offset of AD8610 is very small and normally does not require additional offset adjustment. however, the offset adjust pins can be used as shown in figure 66 to further reduce the dc offset. by using resistors in the range of 50 k, offset trim range is 3.3 mv. r1 + v s v out ?v s AD8610 02730-066 7 6 1 5 4 3 2 figure 66. offset voltage nulling circuit programmable gain amplifier (pga) the combination of low noise, low input bias current, low input offset voltage, and low temperature drift make the AD8610/ ad8620 a perfect solution for programmable gain amplifiers. pgas are often used immediately after sensors to increase the dynamic range of the measurement circuit. historically, the large on resistance of switches (combined with the large i b currents of amplifiers) created a large dc offset in pgas. recent and improved monolithic switches and amplifiers completely remove these problems. a pga discrete circuit is shown in figure 67. in figure 67, when the 10 pa bias current of the AD8610 is dropped across the (<5 ) r on of the switch, it results in a negligible offset error. when high precision resistors are used, as in the circuit of figure 67, the error introduced by the pga is within the ? lsb requirement for a 16-bit system. v in v out AD8610 7 4 6 5 1 2 3 in1 s1 d1 10k ? 10k ? 1k ? 5 v +5v in2 s2 d2 in3 s3 d3 in4 s4 d4 adg452 3 2 14 15 11 10 6 7 v l v dd 13 12 1 16 9 8 74hc139 v ss 4 gnd 5 1k ? 100 ? 11 ? 5pf g = +1 g = +10 g = +100 g = +1000 +5v +5v ?5v y0 y1 y2 y3 g a b a0 a1 02730-067 100 ? figure 67. high precision pga 1. room temperature error calculation due to r on and i b : v os = i b r on = 2 pa 5 = 10 pv total offset = AD8610 ( offset ) + v os total offset = AD8610 ( offset_trimmed ) + v os v 5 pv 10 v 5 ? + = offset total 2. full temperature error calculation due to r on and i b : v os (@ 85c) = i b (@ 85c) r on (@ 85c) = 250 pa 15 = 3.75 nv 3. temperature coefficient of switch and AD8610/ad8620 combined is essentially the same as the t c v os of the AD8610/ad8620: v os / t ( total ) = v os / t (AD8610/ad8620) + v os / t (i b r on ) c v c c total t v os ? + = / 5 . 0 nv/ 06 . 0 / v 5 . 0 ) ( /
AD8610/ad8620
high speed instrument ation amplifi e r th e t hr e e o p a m p in str u m e n t a t io n a m pli f ier s sh o wn in f i gur e 68 c a n pr ov i d e a r an g e of g a i n s f rom u n it y up t o 1 0 0 0 o r h i g h e r . t h e in st r u m e n t a t ion a m pl if ier co nf igura t io n fe a t ures hig h c o m m o n - m o de r e j e c t i o n, b a la n c e d dif f er en t i a l in p u ts, a n d st a b le, acc u r a tel y def i n e d ga in. l o w in p u t b i as c u rr en ts a n d fas t s et tlin g a r e a c h i e v e d wi th t h e jfe t in p u t AD8610/ad8620. m o s t ins t r um e n t a t io n am pl i f i e r s c a n n ot m a tc h t he h i g h f r e q u e nc y p e r f or m anc e of t h i s c i r c ui t. th e ci r c ui t b a n d wid t h is 25 mh z a t a g a in o f 1, a n d clos e t o 5 mh z a t a g a i n o f 10. s e t t li n g ti m e f o r th e e n ti r e ci r c ui t i s 5 50 n s t o 0.01% f o r a 10 v s t ep (ga i n = 10). n o t e tha t t h e r e sis t o r s a r o und th e i n p u t p i n s n eed t o be s m all e n o u g h in v a l u e so th a t t h e r c ti m e co n s ta n t th ey f o rm i n c o m b i n a t i o n w i th s t ra y ci r c ui t ca pa ci - t a n c e do es n o t r e d u ce cir c u i t b a n d w i d t h. v + i n ac t i v e f i l t er a p plica t io n s using o p era t io na l am plif iers, t h e d c acc u rac y o f t h e a m plif ie r is cr i t ical t o o p t i mal f i l t e r p erf o r m a n c e . the o f fs et v o l t ag e a nd b i as c u r r en t o f t h e am pli f ier co n t r i b u t e to o u t-p u t er r o r . i n p u t o f fs et v o l t a g e is p a s s e d b y t h e f i l ter , a nd c a n b e a m pl i f i e d to p r o d u c e exc e s s ive out p ut o f f s e t. f o r lo w f r e q u e n c y a p plic a t io n s r e quir in g la rge va lue in pu t r e sist ors, b ias a nd o f fs et c ur r en ts f lo w i n g t h r o ug h t h es e r e sis t o r s als o g e n e ra t e an o f fs et volt age. a t h i g he r f r e q u e nc i e s , t he dy n a m i c re sp ons e of t he a m pl i f i e r m u s t b e ca r e full y c o n s i d e r ed . i n th i s ca se , s l ew ra t e , ba n d w i d t h , a n d o p e n - l o o p ga in pl a y a ma j o r r o le in a m plif ie r s e le c t ion. th e sl e w r a te m u st be b o t h f a st and sy mme t r i c a l t o minimize d i s t o r ti o n . t h e ba n d w i d t h o f th e am p l i f i e r , i n c o n j un cti o n w i th th e ga in o f t h e f i l t er , dic t a t es t h e f r e q uen c y r es p o n s e o f t h e f i l t er . th e us e o f hig h p e r f o r ma n c e a m p l i f ie rs s u c h a s th e a d 8610/ad8 620 m i n i m i z e s b o t h dc a nd ac er r o r s in a l l ac t i v e f i l ter a p plic a t io n s . 1/ 2 a d 8620 r2 1k? r4 2k ? c4 15 p f v ou t r8 2k? r7 2k? r1 1k ? c5 10p f vC v+ a d 8610 u2 c3 15p f r5 2k ? r6 2k ? v in 1 vC 1/ 2 a d 8620 u1 rg 5 6 7 u1 7 4 6 3 2 8 4 1 3 2 secon d - o r d er low-pass filter f i gur e 69 sh o w s th e AD8610 conf igur ed as a s e co nd-o r d e r , b u t t er w o r t h, lo w-p a s s f i l t er . w i t h t h e val u es as s h o w n, t h e c o r n e r f r e q uen c y o f t h e f i l t er is 1 mh z. the wide b a n d wi d t h o f t h e AD8610/ad86 20 al lo ws a co r n er f r eq uen c y u p t o t e n s o f mega- h e r t z. th e f o llo w in g eq ua t i o n s ca n be use d f o r co m p o n en t se l e cti o n : r1 = r2 = user selected ( typical values : 10 k ? 100 k ) 1 . 414 c1 = () 2 ( f cutoff () ) r1 0 . 707 c2 = () 2 ( f cutoff ) () r1 w h er e c1 an d c2 are i n f a r a d s . v in 2 a d 8610 7 4 6 1 5 2 3 + 13v C13v c1 22p f 027 30 - 06 9 r1 10 k ? u1 r2 10k ? 02 73 0- 0 68 c2 10p f v in c2 v ou t figure 6 8 . high spe e d ins t ru ment atio n a m pl ifi e r 11 p f high speed filters th e fo ur m o st po p u la r co n f igura t io n s a r e bu t t e r w o r t h, e l li p t ica l , b e ss el ( t h o m p s o n) , a nd c h e b y s he v . e ach ty p e has a r e sp o n s e figure 6 9 . s e c o nd- o rder low- pas s f ilt er t h a t is o p t im ize d fo r a g i v e n ch a r ac ter ist ic as sh o w n i n ta b l e 6 . table 6. filter ty pes t y pe s e nsitivit y o v ershoot phase a mplitude (p as s band) butt er w o r t h cheb yshev elliptica l b essel ( t homp s o n) m o der a t e g ood b e st p oor good m o der a te p oor b est nonlinea r linear ma x f l a t eual r ip p le eual r i p p le rev. e page 20 of 2 4
AD8610/ad8620
high spe e d, l o w noise diff ere ntial dri v e r the ad8620 is a p e r f ec t candida t e as a lo w n o is e dif f er en t i al dr i v er fo r ma n y p o p u la r ad cs. ther e a r e als o o t h er a p plic a- t i o n s (s uch as b a lan c e d li n es) t h a t r e q u ir e dif f er en t i al dr i v ers. the cir c ui t o f f i gur e 70 is a uniq ue lin e dr i v er wide l y us ed in ind u s t r i al a p pli c a t io ns. w i t h 13 v s u p p lies, t h e l i n e dr i v er can de liv e r a dif f er en t i al sig n al o f 2 3 v p-p in t o a 1 k lo ad . th e hig h s l e w ra te and wide ban d wid t h o f t h e ad8 620 co m b in e t o yie l d a f u l l p o wer ba nd wid t h o f 145 kh z while th e lo w n o i s e f r o n t en d p r o d u c es a r efer r e d -t o-in p u t n o is e v o lt a g e sp e c t r al d e n s i t y o f 6 nv/ h z . th e desig n is a bala n c e d tra n smis s i o n sys t e m w i t h out t r ans f or me r s , w h e re o u tput c om mon - mo d e re j e c t i on of n o is e is o f p a ram o u n t i m p o r t an ce. l i k e t h e t r a n sfo r m e r - b a s e d desig n , e i t h er ou t p ut can b e sho r te d to g r o u n d fo r un b a lan c e d line dr i v er a p pli c a t io ns w i t h o u t cha n g i n g t h e circ ui t ga i n o f 1. this al lo ws t h e desig n t o b e e a s i ly s et t o n o ni n v er t i n g, i n v er t- in g, o r dif f er en t i al op era t ion. v o 1 v o 2 3 2 vC 3 2 vC v+ 5 6 v+ 1/ 2 a d 8 620 u2 a d 8610 1/ 2 a d 8 62 0 u3 6 7 0 1 0 02 73 0- 07 0 r3 1k? r4 1k? r1 3 1k ? r5 1k? r6 10k ? r7 1k? r1 1k ? r12 1k ? r2 1k? r1 0 50 ? r11 50? r8 1k? r9 1k? v o 2 C v o 1 = v in vC v+ fig u re 7 0 . d i f f er ent ia l d riv e r rev. e | page 21 of 2 4
AD8610/ad8620
outline dimensions
3.20 4 8 1 5 pin 1 3.00 2.80 3.20 3.00 2.80 5.15 4.90 4.65 0.65 bsc 0.95 0.85 1.10 max 0.75 0.80 8 0.15 0.38 0.22 0.60 0.23 0.08 0 0.40 0.00 coplanarity seating 0.10 plane compliant to jedec standards mo-187-aa fig u re 7 1 . 8-le ad m i ni sm al l out lin e pa ck ag e [m s o p]
(rm-8)
dim e nsio ns sho w n i n mi ll im e t er s
ordering guide 5. 00 ( 0. 1 968) 4. 80 ( 0. 1 890) 6. 20 ( 0. 24 40) 4. 00 ( 0. 157 4) 5. 80 ( 0. 22 84) 3. 80 ( 0. 149 7) 4 1 8 5 1. 27 ( 0. 050 0) 0. 50 ( 0 . 0196) 45 bs c 1. 75 ( 0 . 0688) 0. 25 ( 0 . 0099) 1. 35 ( 0 . 0532) 0. 25 ( 0. 00 98) 8 0. 10 ( 0. 00 40) 0 0. 51 ( 0. 0201 ) co p l ana ri t y 1. 2 7 ( 0. 0500) 0. 10 se a t i n g 0. 31 ( 0. 0122 ) 0. 25 ( 0. 00 98) 0. 4 0 ( 0. 0157) p l ane 0. 17 ( 0. 00 67) c o m p l i ant t o je de c s t an dards m s - 012- a a c o nt ro l l i ng di m e ns i o ns a re i n m i l l i m e t e rs ; i nch d i m e n s i o ns ( i n p a r en t h ese s) a r e r o u n d ed - o f f mi l l i m et er eq u i v a l en t s f o r r e f e re n ce o n l y a nd are no t ap p ro p ri a t e f o r us e i n d e s i g n. fig u re 7 2 . 8-le ad s t anda rd s m a l l out l ine p a ck ag e [soic _ n]
nar r ow b o dy
(r-8)
dim e nsio ns sho w n i n mi ll im e t er s and (i nc he s)
06 05 06 - a model t e mper a tur e r a nge p a ck age desc ri ption p a ck age o p tion br anding AD8610ar AD8610ar-reel AD8610ar-reel 7 AD8610arz 1 AD8610arz -re e l 1 AD8610arz -re el7 1 AD8610arm -re el AD8610arm -r2 AD8610armz -reel 1 AD8610armz -r2 1 AD8610br AD8610br-reel AD8610br-reel 7 AD8610brz 1 AD8610brz -ree l 1 AD8610brz -ree l7 1 C40c to +125c C40c to +125c C40c to +125c C40c to +125c C40c to +125c C40c to +125c C40c to +125c C40c to +125c C40c to +125c C40c to +125c C40c to +125c C40c to +125c C40c to +125c C40c to +125c C40c to +125c C40c to +125c 8-l e ad soic_n 8-l e ad soic_n 8-l e ad soic_n 8-l e ad soic_n 8-l e ad soic_n 8-l e ad soic_n 8-l e ad msop 8-l e ad msop 8-l e ad msop 8-l e ad msop 8-l e ad soic_n 8-l e ad soic_n 8-l e ad soic_n 8-l e ad soic_n 8-l e ad soic_n 8-l e ad soic_n r-8 r-8 r-8 r-8 r-8 r-8 rm -8 rm -8 rm -8 rm -8 r-8 r-8 r-8 r-8 r-8 r-8 b0a b0a b0a# b0a# ad8620ar ad8620ar-reel ad8620ar-reel 7 ad8620arz 1 ad8620arz -re e l 1 ad8620arz -re el7 1 ad8620br ad8620br-reel ad8620br-reel 7 ad8620brz 1 ad8620brz -ree l 1 ad8620brz -ree l7 1 C40c to +125c C40c to +125c C40c to +125c C40c to +125c C40c to +125c C40c to +125c C40c to +125c C40c to +125c C40c to +125c C40c to +125c C40c to +125c C40c to +125c 8-l e ad soic_n 8-l e ad soic_n 8-l e ad soic_n 8-l e ad soic_n 8-l e ad soic_n 8-l e ad soic_n 8-l e ad soic_n 8-l e ad soic_n 8-l e ad soic_n 8-l e ad soic_n 8-l e ad soic_n 8-l e ad soic_n r-8 r-8 r-8 r-8 r-8 r-8 r-8 r-8 r-8 r-8 r-8 r-8 1 z = p b -fre e part, # d e no te s le ad -f re e pro d uct can be to p or bo tto m mark e d . rev. e | page 22 of 2 4
AD8610/ad8620
notes
rev. e | page 23 of 2 4

AD8610/ad8620
notes
?2006 analo g devi ces, inc. all rights reserve d . tra d em ar ks and registered tra d emar ks are the prop erty of their respective o wners . c02730-0-1 1/06(e) rev. e | page 24 of 2 4


▲Up To Search▲   

 
Price & Availability of AD8610

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X